Goals , Objectives, Performance Measures of EWA for salmon and recommended relevant analyses October 2003

- I. Goal: Determine effective and efficient methods to implement existing regulatory requirements.
 - A. Objective 1: Avoid Exceeding Regulatory Take Levels and Minimize Take
 - 1. Conceptual Model How minimizing take would improve survival in the Delta and in the population.
 - 2. Performance Measures (Did we meet a, b and c.?)
 - a. Did we avoid Ayellow light@ and Ared light@?
 - (1) Continue to improve LOSS estimate calculation.
 - (a) Document limitations of LOSS estimate calculation.
 - i) DFG report by statistician.
 - ii) OCAP.
 - (b) Determine mortality in forebay. Delegate to South Delta Fish Facilities Forum (not directly an EWA issue).
 - i) Make DFG report available. Determine if previous analyses are applicable to present conditions.
 - ii) Measure prey biomass flux across forebay using releases of tagged prey under variety of flow conditions and prey densities. Report results of predation experiments to panel.
 - iii) Develop new research initiatives?
 - iv) Measure predator biomass and species composition?
 - v) Quantify predator diets and growth rates. Already done?
 - vi) Develop bio-energetics model?
 - vii) Quantify prey biomass as it enters and exits the forebay.
 - (2) Incorporate genetics into run separation.
 - (3) Continue to refine NMFS JPE.
 - (a) Document limitations of NMFS JPE including confidence levels.
 - (b) Refine in-river production/survival estimates.
 - i) Evaluate escapement to RBDD juvenile counts.
 - ii) Compare JPE to in-river monitoring estimates of abundance at RBDD, Knights Landing, Sacramento and Chipps Island.
 - a) Recalculate KL absolute abundance estimates using weekly efficiencies.
 - iii) Use RBDD and KL estimates of abundance for in-river survival estimates.
 - iv) Correlate late-fall in-river survival from Battle Creek to Ryde, and Ryde to Chipps to flow, temp, and other environmental variables.
 - (c) Develop better monitoring techniques for each element of the JPE estimate.
 - i) First need to compile existing monitoring and techniques.
 - ii) Investigate PIT tagging of wild winter run at RBDD to measure survival to downstream locations?

- iii) Investigate applying fall run information to winter run. Involves making Newman=s paired survival model into a spreadsheet.
- b. Did we take actions at appropriate times?
 - (1) Based on loss?
 - (a) Analyze historic loss data annually.
 - i) Calculate percentage saved annual trend compared to base case.
 - (2) Based on abundance in the Delta?
 - (a) Compare loss trend to Chipps Island abundance trend.
- c. Did Decision Process lead to appropriate decisions?
 - (1) Document decision process what is criteria based on?
 - (a) Evaluate DWR particle tracking model to refine decision tree.
 - (b) Incorporate data analyses and confidence limits.
 - (c) Investigate formal risk assessment. Kenny Rose advised RA for biological systems hasn=t been successful.
 - (d) Incorporate new analyses.
 - (e) Evaluate relationship between decision criteria and designated take levels.
 - (2) Are the numeric criteria appropriate?
 - (3) Are the protocols appropriate?
 - (4) Are there conflicting priorities, such as, water quality and limited assets?
 - (a) Are hydrologic forecasts adequate.
 - (5) Are action criteria appropriate?
 - (a) Duration of DCC closure.
 - (b) Determine most effective magnitude and duration of export reduction to reduce loss.
- 3. What factors influence take or episodes of take? Can they be predicted and avoided?
 - a. Review Jones and Stokes evaluations and Real time analyses.
- B. Objective 2: Maximize Survival of Emigration in Context of Exports and DCC Operations.
 - 1. Conceptual Model How would maximizing survival in the Delta affect populations.
 - 2. Performance Measure (Did we improve survival in the Delta By how much?)
 - a. Determine optimal export curtailments in time and magnitude.
 - (1) Further develop FWS DA8 experiments (exports versus relative survival) with more rigorous statistical analysis. Incorporate confidence limits.
 - (2) Implement Newman Delta paired survival model for export effects.
 - (3) Discuss Ryde as appropriate control group for relationship.
 - (4) Ryde/GS loss relationship with exports.
 - (5) Discuss fall run Ryde relationship with ocean survival, but not Chipps survival. Why is there a difference?
 - b. Determine optimal DCC operations.

- (1) Evaluate DCC experiments to determine effects of DCC gate operations on Chinook emigration patterns into DCC and GS.
- (2) Model real time salinity impacts from gate operations and river flows.
- c. Determine passage at several locations in the lower river and Delta for magnitude of benefits and for predictive capabilities.
 - (1) Standardize catches, at least by station.
 - (2) Re-analyze KL and Sacramento CWTs.
 - (3) Incorporate standard errors at Sacramento and KL.
 - (4) Incorporate more environmental variables into passage analysis, such as, water temperature, turbidity, emigration timing.
 - (a) Recommend continuous temperature and turbidity at Sacramento.
 - (5) Contact Jim Anderson, again, about applicability of Columbia Passage models.
- II. Goal: Determine if Minimizing Take and Maximizing Survival through the Delta Provides the Greatest Population Benefits Relative to other Uses of EWA Water.
 - A. Objective 1: To use EWA water to maximize its population benefits.
 - 1. Conceptual model What are the most limiting factors that additional water could help. Is it possible to use the water for other things if take is exceeded in the process?
 - 2. Performance Measure Did we get the greatest relative population benefit from the water? What other actions are leveraged by the water?
 - a. How else could we use the water compared to reducing exports for take?
 - (1) Base case versus closing the DCC gates more frequently what benefit.
 - (2) Base case versus using water upstream for spawning to reduce temperature.
 - (3) Release of water during juvenile outmigration period to improve survival.
 - (4) Use water to minimize river fluctuations during egg incubation or juvenile rearing.
 - (5) Use of water to minimize benefits to non-native species.
 - (6) Use of water to increase spawning attraction flows.
 - (7) Use of water to maintain water temperature during rearing period.
 - b. Estimate benefits of alternative uses of EWA with a common point of reference (i.e. Smolt equivalents or adult equivalents).
- III. Goal: Relate Population Benefits of EWA Actions to Other Potential Actions.
 - A. Objective 1: Take most effective actions to protect the salmon population.
 - 1. Conceptual Model Determine sensitivity of changes at any one lifestage by
 - Performance Measures How did EWA benefits compare to other selected potential actions and what were the combined benefits with and without EWA?
 - a. Evaluate life cycle or life stage models for use in assessing EWA benefits relative to other actions within or between lifestages.

- (1) Investigate utility existing models.
 - (a) CPOP
 - (b) DFG Fisher.
 - (c) NMFS Odenweller.
 - (d) NMFS Winter Run Chinook Cohort Reconstruction Model CWT based Dan Viele.
 - (e) NMFS Steve Lindley Smolt Model.
 - (f) Fractional Marking Alan Hicks, Dave Hankin and Ken Newman.
 - (g) Discuss BJ Miller=s model.
 - (h) Ken Newman models.
- (2) Further develop existing or create new models.
 - (a) Develop AFish Tracking Model@ from particle tracking model and behavior estimates from radio tagging and CWT tagging.
 - (b) Continue to develop data for models
- (3) Continue to improve accuracy of spawning population estimates
 - (a) Document limitations of carcass survey estimate.
 - (b) Investigate skewed sex ratio in winter run escapement (genetics?).
 - (c) Estimate age in spawning escapement.
- (4) Continue to develop in-river survival estimates (by lifestage and race).
 - (a) Eggs to fry.
 - (b) Fry to smolts.
 - (c) Smolt survival to the Delta.
 - (d) Incorporate data from GCID monitoring.
 - (e) Incorporate data from Balls Ferry.
- (5) Continue to develop Delta survival estimates.
 - (a) Use Newman paired survival model to estimate survival through the Delta
 - (b) Continue DA8 experiments and use relationship with measures of uncertainty.
 - (c) Determine gear efficiencies at Sacramento and Chipps Island trawls. Hydroacoustics?
- (6) Compare EWA benefits or other actions by using a common lifestage reference (i.e. smolt/adult equivalents).
- Determine factors affecting in-river survival by race and lifestage.
 - (1) Analyze relationship between juvenile survival from RBDD to Ryde and flow, temperature and bypass flooding.
 - (2) Assess growth and mortality using NMFS EFH guidelines.
 - (3) Quantify benefits of gravel restoration.
 - (4) Quantify benefits of habitat restoration.
 - (5) Determine Sutter and Yolo bypass survival rates.
 - (6) Determine benefits of upstream rearing water temperature.
- c. Determine factors affecting Delta survival by race and lifestage.
 - (1) SWP/CVP exports
 - (a) Evaluate the effect of take on juvenile survival in the Delta.

- (2) Use DWR Fingerprinting Model to correlate flow contributions with loss.
 - (a) What are mechanisms for the effects of exports on survival in the Delta?
- (3) Evaluation of indirect effects of SWP/CVP exports using DA 8 equation.
- (4) Incorporate several averaging periods for describing environmental parameters.
- d. DCC operation
 - (1) Use Newman paired survival model for evaluating DCC effects.
 - (a) Evaluate DCC gate operations to determine effects on Chinook emigration patterns.
 - (2) Determine Chinook response to tide, flows and channel morphology.
 - (a) Consider effect of Franks Tract on tidal prism and Chinook emigration.(Relevance?)
 - (b) Investigate hydrodynamics at specific junctions. (Relevance?)
 - (3) Habitat limitations
 - (a) Develop habitat suitability models (from tagging data?).
 - (4) Predation
 - (a) Explain why predation may be higher in the Central Delta than in the mainstem Sacramento River.
 - (b) Document predation in Georgiana Slough (Vogel radio tag studies).
 - (5) Residence time
 - (a) Determine extent of Delta rearing.
 - (6) More analyses of Bay, seine, and 1970's data
 - (a) Determine fry and smolt distribution and abundance in the Delta.
 - (7) Incorporate hydroacoustics and otolith experiments.
 - (8) Determine smoltification in monitoring program and at SWP/CVP to determine if Chinook at pumps are rearing or emigrating.
 - (a) What is the importance of the Delta for fry and smolt rearing?
 - (9) Combine late fall and fall-run paired survival experiment data.
 - (a) Update late-fall paired survival experiment data set.
 - (b) Update ocean survival data.
 - (10) Incorporate Mokelumne Hatchery yearling fall-run survival experiments.
 - (11) Impacts of unscreened agricultural diversions.
 - (12) Water quality.
- e. Use DWR Fingerprinting Model to correlate flow contributions with survival.
- Determine factors affecting ocean survival.
 - (1) PDO (NMFS).
 - (2) El Ninos (NMFS)
 - (3) Harvest rate (NMFS)
- g. Determine factors affecting adult immigration success
 - (1) Improve adult escapement estimates. Implement constant fractional marking.
 - (2) Analyze Coleman late-fall hatchery returns.

- (3) Immigration barriers.
- (4) Reverse flow patterns.
- (5) Determine benefits of spawning attraction flows.
- h. Determine factors affecting adult spawning success.
 - (1) Habitat limitations.
 - (a) Quality
 - (2) Temperature
 - (3) Flows
 - (4) Substrate
 - (a) Quantity is habitat limiting?
- i. Correlate survival indicators or conditions to adult production and spawning escapement.
- j. Link our models to conceptual models identified and discussed in fundamental CALFED process.
- k. Designate group to determine population benefits of all CALFED programs, e.g., ERP, EWP, AFRP.